	
[image:] HANA
HANA Studio Developer Demo

Contents
Introduction	2
Creating a Workspace and Project	2
Basic Project Files	9
Creating Data	13
Accessing Data	14
Server Side JavaScript	19
Application Site	21
Migrating Content	28
Documentation Links	33

[bookmark: _GoBack]

[bookmark: _Toc339874740]
Introduction

This tutorial will demonstrate how to develop an application in SAP HANA Studio using SAP UI5 and creating data that can be easily transported and referenced through OData calls. The goal is to create a simple web application showing Hello World in a table in several different languages. Prerequisites for the tutorial are:
· An SAP HANA Database Server with at least revision 48
· SAP HANA Studio installed with the same revision as the Database Server
· The SAPUI5 toolkit installed in HANA Studio
· The HANA system added to HANA Studio
Instructions on preparing HANA Studio for this project can be found in the HANA Studio Installation and Setup Demo.

Creating a Workspace and Project

The first step is to create a repository workspace in HANA Studio. This is the location for all development files that allows for version control when sharing between developers, and easy transport by placing the files in a package in the HANA environment.

With HANA Studio open, switch to the SAP HANA Developer perspective. In the upper right hand corner of the main screen, all perspectives that have been used should be displayed. If the Developer perspective has not yet been used, selecting the box with a yellow plus sign will allow you to add another perspective to that list.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\000_change_perspective.png]
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\001_change_perspective.png]

In the Developer perspective, the SAP HANA Systems, Project Explorer, and SAP HANA Repositories should be visible. In versions of HANA Studio prior to revision 55, SAP HANA Systems will instead be the Navigator. If any are not present, go to the Window menu and Show View. If any are not showing on the immediate menu, click “Other…”. Project Explorer can be found in the “General” folder, and SAP HANA Repositories and Navigator/SAP HANA Systems can be found under SAP HANA Studio. There is also a Navigator option in the General folder, but it is not the same Navigator that is used in older versions.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\002a_views.png][image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\002b_views.png]

The workspace will allow you to place all files in a HANA package for ease of transport. Before we create a new workspace, we should make a new package to contain our XS project. In the SAP HANA Systems pane, expand the system and right click the Content node and go to “New” -> “Package”.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\003_new_package.png]

Fill in the name of the package you want to create; ignore the delivery unit for now. The package will now be visible in the content folder in the Navigator.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\004_new_package.png]
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\005_new_package.png]

Once the package is created, the repository is next. Go to the SAP HANA Repositories tab, right click, and select New Repository Workspace.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\006_new_repository.png]
Select the system to create the workspace on, choose a workspace name, and select a location for the files to be placed on the local machine.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\007_new_repository.png]

Expand the new repository and right click the folder for the package that was created for the project, then select Checkout.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\008_checkout_repository.png]

A checkmark will appear on the folder. Any content that was already in the folder (there should be none) will be copied to the local machine, and any future content will have a file on the local machine in a folder for the selected package in the location selected for the workspace.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\009_checkout_repository.png]

Now that we have a repository workspace, we need to create a project within it. Projects group together all application-related artifacts, containing folders and files for the application. Multiple projects can be placed into one repository workspace.

To create the project, go to the Project Explorer tab, right click, and select “New” -> “Other”.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\010_new_xs_project.png]

Expand the SAP HANA Development folder and select XS Project.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\011_new_xs_project.png]

Choose a name for the project. Uncheck “Use default location” and navigate to the folder on your local machine for the checked out package; this will allow all content for the project to be associated with that package in HANA Studio.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\012_new_xs_project.png]

To connect the project to the HANA server so that files can be committed to the repository and activated, right click the project name and go to “Team” -> “Share Project…”.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\013_share_xs_project.png]

	Now the project is created, and we are ready to start adding content.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]

Basic Project Files

Before we can add any actual functionality to the application, we need to add files that will let the server recognize that there is XS application content in the project. The first file necessary is the .xsapp file. Right click the project name and go to “New” -> “File”, and type .xsapp in for the name. When you click create, it will open in a text editor, but this file should remain completely blank, so you can close the text editor.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\015_xsfiles.png]

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\015b_xsfiles.png]

An .xsaccess file will also need to be created to control access to the project. Again, create a new file, this time called .xsaccess. This will need some content; the code is in JSON format and should be as follows:

{
"exposed":true,
"authentication": [
{
"method":"Basic"
}]
}

This exposes the application to the web server, and enables basic authentication, which will allow users to log in with their HANA credentials. For other options such as form-based authentication or SAP logon tickets, refer to the SAP HANA Developer’s Guide.

When the .xsapp and .xsaccess files are saved, they both need to be committed to the server and then activated. Right click the file name, select “Team” -> “Commit”, then right click and select “Team” -> “Activate”. You can either commit and activate each file individually, or select multiple using shift or control. It is also possible to select activate or commit on the project name, and that will perform the command on all files within the project.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\016_commit.png]

Also before adding content, it will help to create folders to organize the parts of the application. The folders we will create are data, services, and UI. They are created by right clicking the project and going to “New” -> “Folder”.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\014_project_folders.png]

Next, we will need to create a schema to contain the data files we will create, and create roles with access to that schema so that users can access it. A schema can easily be created using SQL, but that will not be easily transportable; in the project, we can create a .hdbschema file that can be exported and imported with the rest of the project. Our schema will be called HELLOWORLD; to create it, right click the data folder and create a new file. The name of the file needs to be the name of the schema, so name it HELLOWORLD.hdbschema. When it opens in the text editor, input the following syntax:

schema_name="HELLOWORLD";

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\018_schema_create.png]

Once that is saved, commit and activate the schema, and we will move on to the roles and privileges for the schema and application. In the root folder of the application, create a new file called .xsprivileges. We will make a basic set of privileges, and a set of administrative privileges as follows:

{
	"privileges":[
		{
			"name":"Basic",
			"description":"Basic user privileges"
		},
		{
			"name":"Admin",
			"description":"Administrative privileges"
		}
]	
}

This simply creates a list of different types of privileges; actual access can be controlled by other files. The .xsaccess file can limit authorization to the package based on privileges; refer to the SAP HANA Developer’s Guide for information on how to do this. Commit and activate the privileges file, then create the roles. In the data folder, we will make hwUser.hdbrole and hwAdmin.hdbrole. Here is the syntax for the user:

role <basepackage>.data::hwUser {
	catalog schema "HELLOWORLD": SELECT;
	application privilege: <basepackage>::Basic;
}

In this, the <basepackage> refers to the base package of the project, where it was placed in the repository. In the tutorial, it was created in package “xsdemo”; the location can be seen in single quotes next to the name of the project, after the user name, if the project is shared.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\022_package_name.png]

This role has select privileges only on the schema we created, and basic application privileges as created in the .xsprivileges file.

The hwAdministrator will have all privileges that the hwUser has (extending the role), as well as Admin privileges from the .xsprivileges file and more access to the schema we created.

role <basepackage>.data::hwAdmin
extends role <basepackage>.data::helloUser
{
	catalog schema "HELLOWORLD": INSERT, UPDATE, DELETE, DROP;
	application privilege: <basepackage>::Admin;
}

Once those roles are created, the system user (or any user with “GRANT_ACTIVATED_ROLE (_SYS_REPO)” SQL privileges) will need to grant them to users.

Creating Data

Now that the schema is created, we will add a table to it. We will create a very simple table called hello_world, with two data columns and a primary key. Create a new file named hello_world.hdbtable with this syntax:

table.schemaName = "HELLOWORLD";
table.tableType = COLUMNSTORE;
table.description = "Hello World";
table.columns = [
{name = "ColID"; sqlType = NVARCHAR; nullable = false; length = 5; comment = "Column ID"; },
{name = "Hello"; sqlType = NVARCHAR; nullable = false; length = 10; comment = "Hello"; },
{name = "World"; sqlType = NVARCHAR; nullable = false; length = 10; comment = "World"; }
];
table.primaryKey.pkcolumns = ["ColID"];

This makes a simple table with 3 columns – an ID column, one for Hello, and one for World. Commit and activate the table; it will now be visible in the catalog.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\024_table_made.png]

While the easiest way to load small quantities of data into the table would be a SQL insert statement, we will show how to load a CSV file into the table via the repository. This requires creating three files – the .csv to be loaded, a .hdbtid file that points to the csv file, and .hdbtim file that points to the table to import into.

First is hello_world.csv. It will likely try to open in excel; the easiest way to edit the file is to close excel and right click the file and select “Open With” -> “Text Editor”.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\028_csv_open.png]
The data to load is:

001,Hello,World
002,Hallo,Welt
003,Ciao,Mondo

Then create the file hello_world.hdbtid. Here is the syntax:

implements xsdemo.data:hello_world.hdbtim;
csvFiles = ["xsdemo.data:hello_world.csv"];

Finally, the file hello_world.hdbtim:

listCsvFile csvFiles;
import csvFiles "HELLOWORLD" "xsdemo.data::hello_world";

Where HELLOWORLD is the schema name and “xsdemo.data::hello_world” is the target table.

The files can then be committed and activated; the .hdbtim file must be activated before the .hdbtid file or else the .hdbtid file activation will throw an error. Once all three files are active, the csv data will load into the table; it can be viewed with a SQL query or by data preview.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\032_data_preview.png]

Accessing Data

Once the table is created, we will make an OData file to access it. In the services folder, create a file called hello.xsodata. The syntax follows:

service namespace "xsdemo.services" {
	"HELLOWORLD"."xsdemo.data::hello_world" as "HelloWorld";
}

This just refers to the table we created by the alias HelloWorld, and allows us to connect to it via the XS engine.

Some objects such as csv files and OData calls can be checked via a web browser. Chrome and Firefox are recommended for this purpose. The URL for XS objects is http://<domain>:80<instance #>/<package>/<filename>. Many other files, such as the hdbrole and hdbtable files, will not be accessible in this manner. The output for many of the files is not easily readble; for more information on how to read the data through the browser and arguments to add to the URL, refer to the HANA Developer’s guide.

The next step will be to create an application that shows the data from the table via the OData call. We will use the standard HANA application site, which can be used to create detailed applications with many widgets.

First, create an SAPUI5 application project. Right click in Project Explorer, select new, and click Project. Browse to SAPUI5 Application Development and select Application Project.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\036_new_app_project.png]

On the next screen, choose a name, demo_ui. We will keep it as a desktop project, and have it create an initial view.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\037_new_app_project_2.png]
Then select a name (demo), keep it as a JavaScript view, and click finish. If HANA Studio asks if you want to open it with the Java EE perspective, select No.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\038_new_app_project_2b.png]

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\040_new_app_project_done.png]

Once the project is created along with an initial view, it needs to be shared into the workspace. Right click the name in the Project Explorer, go to Team, then click Share Project. Choose SAP HANA Repository and click next. Select your workspace and browse to the package you want to put the UI project in (the ui package of the xsdemo project).

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\044_share_ui_browse_repo.png]

To later create another new view in the same project, you would right click the project name, go to New, and select View.

In the index.html file, the location of the UI5 library source needs to be changed; add “/sap/ui5/1/” to before “resources/sap-ui-core.js”. Also, in order to show table information from our OData call in the view, we must add sap.ui.table to the list of libraries. Where it says “data-sap-ui-libs="sap.ui.commons””, add a comma after commons and add “sap.ui.table”. The entire first <script> block in the header will be as follows:

<script src="/sap/ui5/1/resources/sap-ui-core.js"
 id="sap-ui-bootstrap"
 data-sap-ui-libs="sap.ui.commons, sap.ui.table"
 data-sap-ui-theme="sap_goldreflection" >
 </script>

Then, in the view (demo.view.js), we will need to add a model that refers to the OData call. Step by step, here is the code to include in the view:

First an ODataModel needs to be created. The arguments are the absolute path on the server of the xsodata file being called (/xsdemo/services/hello.xsodata), then the formatting of the data (true = JSON, false = atom XML; could be either in this case). There can also be arguments for username and password, which are not necessary here.

var oModel = new sap.ui.model.odata.ODataModel('/xsdemo/services/hello.xsodata', false);

Then, a table needs to be created for the data. The first argument is an ID string, and the second contains any additional settings within the {}. Some common settings are visibleRowCount, firstVisibleRow, rowHeight, and width. If you set a specific number of visible rows, it will show that many, even if some are blank.

var oTable = new sap.ui.table.Table("helloTable", {visibleRowCount: 5});

Now to add columns, there will first be a TextField control object to use as a template (which we will bind the column name from the OData to). Then, the column needs to actually be added. There is one argument with the settings in brackets; a label can be created to be a header for the column, and the template needs to be set to the control object that was initially created. Some of the other possible settings include width, sortProperty, and resizable (true/false).

oControl = new sap.ui.commons.TextField().bindProperty("value","ColID");	 	 oTable.addColumn(new sap.ui.table.Column({label:new sap.ui.commons.Label({text:"Column ID"}),
 template: oControl, sortProperty: "ColID"}));

Then columns need to be created for the other columns of the table.

oControl = new sap.ui.commons.TextField().bindProperty("value","Hello");
 	oTable.addColumn(new sap.ui.table.Column({label:new sap.ui.commons.Label({text:"Hello"}),
			 template: oControl, sortProperty: "Hello"}));
 	oControl = new sap.ui.commons.TextField().bindProperty("value","World");
 	oTable.addColumn(new sap.ui.table.Column({label:new sap.ui.commons.Label({text:"World"}),
			 template: oControl, sortProperty: "World"}));

Once the table is complete, it needs to be attached to the model we created initially.

oTable.setModel(oModel);

Then data from the OData file needs to be bound to the table. We also create a sorter object to determine the default sorting of the table.

var sort1 = new sap.ui.model.Sorter("ColID");
 	oTable.bindRows("/HelloWorld",sort1);	

Then we set the title of the table.

	oTable.setTitle("Hello World");

And finally, the table needs to be returned so that it will be inserted into index.html.

	return oTable;

So, the full code to be included is as follows:

var oModel = new sap.ui.model.odata.ODataModel('/xsdemo/services/hello.xsodata', false);
 	var oTable = new sap.ui.table.Table("helloTable", {visibleRowCount: 5});
 	
oControl = new sap.ui.commons.TextField().bindProperty("value","ColID");	
oTable.addColumn(new sap.ui.table.Column({label:new sap.ui.commons.Label({text:"Column ID"}),
 template: oControl, sortProperty: "ColID"}));
 	oControl = new sap.ui.commons.TextField().bindProperty("value","Hello");
 	oTable.addColumn(new sap.ui.table.Column({label:new sap.ui.commons.Label({text:"Hello"}),
			 template: oControl, sortProperty: "Hello"}));
 	oControl = new sap.ui.commons.TextField().bindProperty("value","World");
 	oTable.addColumn(new sap.ui.table.Column({label:new sap.ui.commons.Label({text:"World"}),
			 template: oControl, sortProperty: "World"}));
 	oTable.setModel(oModel);
 	
 	var sort1 = new sap.ui.model.Sorter("ColID");
 	oTable.bindRows("/HelloWorld",sort1);			
 	
 	oTable.setTitle("Hello World");
 	return oTable;
The controller does not need any additional coding for this example. Commented descriptions of the different functions in the controller are included in the file by default.

This creates a very simple HTML page with a table showing the data from our Hello World table. Once the controller, view, and index.html page are committed and activated, index.html should be accessible at http://<domain>:80<instance #>/xsdemo/ui/demo_ui/WebContent/index.html

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\050_table_output.png]
OData can also be used to create, update, or delete data from the HANA system.

Server Side JavaScript

An .xsjs file can also be used to access data or perform operations. To show how arguments can be passed to an .xsjs file, we will create a script to multiply two numbers that are included in the URL of the file. Create a new file in the services folder, name it multiply.xsjs, and the text editor will open.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\033_xsjs_create.png]

The syntax begins with passing the parameters, word1 and word2, into variables.

 	var word1 = $.request.parameters.get('word1');
var word2 = $.request.parameters.get('word2');

Then a variable for the answer should be declared.

var answer = '';

Then the words will be concatenated into the answer variable and then put in the body of the page.

answer = word1 + word2;
$.response.setBody(answer);

Save and activate that file, and then you can add two numbers via the web server. The format for the URL is http://<domain>:80<instance #>/xsdemo/services/hello.xsjs?word1=Hello&word2=World. The question mark after the URL indicates the beginning of the parameters, and each additional parameter is indicated with an ampersand.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\034_xsjs_result.png]

There is a great deal more functionality available for XSJS pages, including reading data through SQL and almost anything that standard JavaScript could do.

Application Site

We will use the built in SAP HANA Application Site functionality to expose the OData page to users. This entails creating a widget to place the page in, and an application site to hold the widget. First, we need to make an XML specification file for the widget. In the UI folder of the XS project, create a file called helloWidget.xml.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\054_widget_xml.png]

If it opens in an XML editor, close that and open the file with a text editor. To refer to the html file we already created, the following code is used:

<Module>
	<ModulePrefs title="Hello World">
		<Require feature="sap-context"/>
	</ModulePrefs>
	<Content type="html" href="/xsdemo/ui/demo_ui/WebContent/index.html">
	</Content>
</Module>

Once the XML specification is made, committed, and activated; the actual widget must be created. Right click the location (the UI folder), select New, and Other. Widget is under SAP HANA Development; select it and click Next.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\056_widget_create.png]

For Specification File, browse to the XML file just created. Put the name (helloWidget) in the File Name box; it will autofill the extension. Click Finish.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\057_widget_create_2.png]

Commit and activate the widget.

Finally, we can create the application site. Right click the UI folder, select “New” -> “Other”, and select Application Site under SAP HANA Development. Choose a name, title, and description, then click Finish.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\063_appsite_create_2.png]

Either check the box labeled “Open in browser after completing the wizard” or, if it cannot be checked, commit the appsite and double click it to open it in a browser after the file is created.

The appsite is edited in a browser. Once you have logged in, the following screen should show:
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\066_appsite_opened.png]
The blue buttons on the bar to the right allow you to control what objects are in the appsite. The gear shows the properties of the site, including the production URL associated with it.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\068_appsite_properties.png]

The white squares allow you to add, remove, and edit pages.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\070_appsite_pages_1.png]

In the pages section, we will change the name of the Welcome page to Hello World. Click the name (Welcome) and it will allow you to type a new name.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\072_appsite_pages_2.png]

The plus sign allows you to add widgets to pages.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\074_appsite_widget_1.png]

You can drag the Hello World Widget to the page in the main screen of the appsite.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\076_appsite_widget_2.png]

You can resize the widget on the page by moving the mouse over it until blue boxes appear on the right and bottom sides, as well as the corner, and clicking and dragging those boxes. The arrow in the upper right makes the widget fill the page, and the gear allows you to remove the widget.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\078_appsite_widget_3.png]

The final side button, layout, changes the size of the navigation bar where the page names are listed.

Once the application page has content, go back to HANA Studio and activate it. Return to the browser and get the URL for the page from the Site Properties menu, then you can view your live application site.

Migrating Content

Once the application site is created, you may also want to transport the site to another system, perhaps to a production server from testing. Creating all tables and files within the project makes this very easy. Back in HANA Studio, switch to the Modeler perspective. If the quick launch screen does not come up, go to the Help menu and select Quick Launch. 	
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\080_quicklaunch1.png]
On the quick launch screen, select Delivery Units under Setup. It will bring up a screen showing all delivery units currently in the system; there are a number of default SAP delivery units.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\084_deliveryunits.png]

Click the “Create…” button in the upper right.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\086_deliveryunits2.png]

Give the delivery unit a name. The Vendor is autofilled and cannot be changed; everything else is optional. Click OK. The delivery unit will be craeted with no packages assigned; click the “Add…” button to select a package to include in the delivery unit.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\088_deliveryunits3.png]

All the packages in the xsdemo package will now be shown as associated packages.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\090_deliveryunits4.png]

Close the delivery unit view, and select Export under Content. In SAP HANA Content, you will be able to select Delivery Unit.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\092_export_du_1.png]

Click next. On the Select Delivery Unit screen, choose the new delivery unit from the dropdown and give it an alias. You can now export it to the current server or export it to the client computer to a location of your choice.

[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\094_export_du_2.png]

Verify the settings are correct on the next screen, then click finish to begin the export.

Importing delivery units is also very simple. Select Import on the quick launch screen, and choose delivery unit.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\096_import_du_1.png]
On the next screen, if the file is on the server, select Server and choose the file from the dropdown menu. If you exported to the client machine or have a delivery unit exported elsewhere downloaded to your client machine, select client and browse to the location of the file.
[image: Z:\dwiegand\Documents\HANA Documentation\e2e demo\098_import_du_2.png]

Click Finish to finish importing the delivery unit. You can choose to have the imported items overwrite any inactive versions of the files on the server, and to automatically activate them after importing using the checkboxes in the Actions section.

Documentation Links

SAP HANA Developer Guide
SAP HANA Academy
HANA on help.sap.com
SAP HANA SQLScript Reference
Thomas Jung’s Native HANA Development Workshop

[image:] 30
image2.png
- =i Es
| o | S Rt} Mo

=g

image3.png
$ Administration Console (default)
$5Debug

FO

2 tova Browsing

T+ Jova Type Hierarchy

& tovaserpt

& Lifecycle Management

T Modeler

4=Plugrin Development

[3Resource
157 SAP HANA Development
&0 Team Synchronizing

image4.png
Run_ | Window | Help.

New Window

T Newditor
Hide Toolbar
Open Perspective
ShowView, @ History Alt+Shift+Q, Z
Customize Perspective. £2 |Cria DT
Save Perspective A I s AlteShift-Q, X
Reset Perspective... Ry Projct plorer
Close erspective o properies
Close All Perspectives Other.. AeshifteQ,Q
Navigation
Preferences

image5.png
v 1 General]

> G Ant

» & Debug

> @& Help
=

b @ Java Browsing
b & Javascript

» @ Modeler

b & Plan Visualizer
» G Plugein Development
4 (& SAP HANA Studio
Wy SAP HANA Reposiories

image6.png
[

% @ ©

Refresh Fs
Activate
Validate.

Fiter Packages...

Remove Filter

Apply Filter “xsdemo*

image7.png
Package
Define the package properties

Name:™ sademo.

Descpton: sdemo

—

Orignalanguage: [Engoh Ut o)

berson Responsse VIEGANDD)

Logon Locale [English (United States)

®

image8.png
» 8 wdemo
b & Security

image9.png
(£ Project Bplorer | 1y SAP HANA Reposit.. 37

e

image10.png
Create Workspace
Select system and workspace location.

‘SAP HANA System:
B TQH (WIEGANDD) Hans Documentation

Workspace Name: demo_repo

Workspace Root: Ci\Users\Dave Wihdbstudio\

Add workspace name to workspace root folder

Final Workspace Location: CA\Users\Dave Wihdbstudio\demo,_repo.

®

image11.png
4 (1) demo_repo [TQH (WIEGANDD) e (0]
b & sap

» (& system-local
> [New Repository Workspace

< Checkout
£ Checkout and Import Projects .
© Acivate
a
x

Refresh s

Delete. Delete.

image12.png
4 [demo_repo [TQH (WIEGANDD), m—— 00]
b & sap
b & system-local

6 xsdem)

image13.png
2 Project Bplorer 57 M) SAP HANA Reposit. oy SAP HANASystems = £

5

= V19 Project..
L Find £9 Othen. CuleN
&) Refresh 5

£dit

Showln AleShifeeW >

Copy CHisC
= Copy Qualified Name
@ Pase v
% Delete Delete
Dy Import...
4 Export..
&) Refresh 5

image14.png
Wizards:
[typefittertex

& Viodeing Worion Ergne
L by tevampens
4 (= SAP HANA Development
[B) New Repository Workspace
1§ Role
s Search Rule Set
[Widget
B2 XS JavaScript Library File
[XS JavaScript Source File
55 XS Project
1 (& SAP HANA Studio

image15.png
XS Project
Create 2 new X5 Project

Project name: xsdemo

Use default location

Location: C\Users\Dave Wihdbstudio\demo,_repoxsdemo

image16.png
x G

& LE

Golnto
Showln

Copy
Copy Qualfied Name
Paste
Delete
Move.

Rename.

Import...
Export...

Refresh
Close Project
Close Unrelated Projects

Disable JsLint
Run As
Debug As
Profile As

AltShift<W »

ctisc

sy
Delete.

2

Compare With

Team

PP

Share Project..

image17.png
T3 Fie
Showin AleShife-W > | (5 Folder
= e | [B XS lavaScrpt Source il
Copy Qualified Name. 4§ JavaScript Source File
Paste v | e
X Delete Delete b]

image18.png
File

Create a new file resource.

Enter o select the parent folder:

sademo.

e
@ xsdemo [TQH (WIEGANDD, ssdemo’)]

i nome (ssapd]

®

image19.png
4§ xsdemo [TQH (WIEGANDD, “xsdemo’)]

» A JavaScript Resources
E@ New ,
)
,
cHisC
Cuiev
x Delete
2
[
(%]
&) Refresh 5
Run As ,
Debug As ,
Profle As »
Team > [Apply Patch.
Compare With | | chectout
Replace With ,
% Merge Tool
Properties AleEnter Resolve With
Revert
© Acivate
© Chek
B Commit

Show Local History
Show History

image20.png
» i JovaScript Resources
3 data
@ senvices

e

sapp

image21.png
File

Create a new file resource.

Enter or select the parent folder:

ssdemo/data

e
4/ rsdemo [TQH (WEGANDD, »sdemo?)]

G settings
& data
@ services

e

File name: | HELLOWORLldbschema

®

image22.png
4 8 xsdemo [TQH (WIEGANDD, [xsdemo]]

image23.png
4 i HELLOWORLD
b & Column Views.
b (2 Procedures
4 (= Tables
Fifl xsdemo.datazhello_world
b & Views

image24.png
| B TedEditor
e System Editor
iy In-Place Edtor
bee | © DefultEditor
Other
23

T

image25.png
P51 Raw Data | (] Distinct values 4t Analysis
3 rows retreved -

o World

World
Welt

image26.png
Select a wizard
Create an Application Project

Wizards:

[typefittertex

& EMF Project
b & EB

b & Java

b @ JavaEE

b @ JavaScr

| C b sevpment

| oot

L 5 s Ao Devdapmet
b & Web

b B Xtext

b & Bemples

image27.png
Create an Application Project for SAPUIS

Enter a name and choose a location

Project name:* demo_ui

Use default location

Location [GUserDove Widbstudiondeme

Target Device
© Desktop
© Mobile

Options.
Create an Initial View

image28.png
Create a New View

Choose a project and a name and specify the development paradigm

Project* [demo_ui

Folder: WebContent/demo_ui

Nome:t [demd

Development Paracigm: © JavaScript
Develop a view using JavaScript

© XML
Develop a view using XML

© JSON
Develop a view using JSON.

image29.png
[Project Explorer 53 1§ SAP HANA Reposit... { SAP HANA [E indechtml 5] demo.controllerjs | [B] demo.viewjs 57

sap.ui.jsview("demo_ui.demo”, {

4+ & demo_ui

» 3 Deployment Descriptor: demo_ui
b &8 Java Resources.
b B JavaScript Resources
b & build
4 §2 WebContent
4 (& demo_ui
» T, demo.controllerjs
» B demouviewjs
4 (& META-INF
MANFESTMF
4 (&= WEB-INF
&b
8] webaxml
2 indechtml

l})

getControllertiane
return "demo_L

function() {
i demo”;

I

createContent : function(oController) {

i

image30.png
Select a repository package

4 [demo_repo [TOH (WIEGANDD), e 0] ~

b & sap
b & system-local
4 & sdemo

o & settings

> dte

» € senices

EX)

B project

1 assccess
[sapp
1 sprivleges

image31.png
Hello World

T ColumniD
001
002
003

Hello

Hello

Hallo

Ciao

World

World

welt

HMondo

image32.png
Create a new file resource.

Enter or select the parent folder:

ssdemo/services

e
b & demo_ui [TQH (WIEGANDD, ‘xsdemo.ui.demo_ui’)]
4§ xsdemo [TQH (WIEGANDD, ‘xsdemo’)]

3 settings

3 data

@3 senvices

b Gy i

Fie nome: el

®

image33.png
€ 9 C A |[) eome——com:3000/xsdemo/services/hello.xsjs7word1=Hello&word2=World

Hello World

image34.png
File

Create a new file resource.

Enter o select the parent folder:

ssdemo/ui

e
b & demo_ui [TQH (WIEGANDD, ‘xsdemo.ui.demo_ui’)]
4§ xsdemo [TQH (WIEGANDD, ‘xsdemo)]

3 settings

3 data

@y senvices

> Gy i

il nsme: helloWidgetam]

®

image35.png
Wizards:

[typefittertex

> & Javascript
» & Modeling Workflow Engine
» € Plug-in Development
4 5 SAP HANA Development
S0 Applicstion Site
[New Repository Workspace
§ Role
v Search Rule Set
5 XS JavascriptLibrary il
[%6 JavsScript Source Fle
1 X6 Project

image36.png
Create New Widget (1/2)
Create a new widget

Enter o select the parent folder:

ssdemo/ui

e
b & demo_ui [TQH (WIEGANDD, ‘xsdemo.ui.demo_ui’)]
4§ xsdemo [TQH (WIEGANDD, ‘xsdemo’)]

3 settings

3 data

@y senvices

NET

File Name: helloWidgetxswidget

Speiication il Fademe/amelloWidgetamt

image37.png
Create New Application Site
Create 2 new application site.

Enter o select the parent folder:

ssdemo/ui

e
b & demo_ui [TQH (WIEGANDD, ‘xsdemo.ui.demo_ui’)]
4§ xsdemo [TQH (WIEGANDD, ‘xsdemo’)]

3 settings

3 data

@y senvices

NET

FileName: _HelloWorld:cappsite

Title: Hello World

Descpton: FiloWord

Open in browser after completing the wizard

image38.png
7 Design ie: Hello World

SAP

WELCOME

image39.png
Site Properties

Title
Hello World

Description
Hello World

Last Actvated By
WIEGANDD

LastActivated On
03.052013 14:49

image40.png
Pages

Welcome

image41.png
Pages

Eelln World|

+ Add

image42.png
Widgets

[search for widgets

[anen

Hello World

image43.png
WEGANDD | &

Widgets
Search for widgets

Al

Hello World

image44.png
rid

HELLO WORLD

= Hello World

Hello World

o Colu. Hello
001 Hello
002 Hallo

003 Ciao

WEGANDD

Widgets
Search for widgets

Al

Hello World

B]

image45.png
Welcome to Modeler

Selected System: TQH

New

Username: WIEGANDD

£ Package
7y Attribute View
 Anaiic View

11 Caleulation View

43 Analytc Priviege
€ Procedure

[Decision Tables

& Package

Packages are used o group together elated information
ebiects for stuctuing putposes.

@ Read More

Content

© vaicat.

© Activate.

© Redeploy.

% Hass Copy

4 mport

4 Eort

S Migrate.

9 Auto Documentstion.
9 Swich Ownership

Setup

& Manage Preferences.
3 Gonfigure Import Serer.
® Delivery Units

& Schema Happing.

Data

FE Generate Time Data.
&) Data Provisioning.
5L Console.

Help
[] Documentation

image46.png
Delivery Units
Manage delivery units to transport packages.
Delivery Units
Neme Vendor Responsible Version Support Package Version _Patch Version PPMSID
HANA DEMOCONT... sapc.. SAP 1 0 0
HANATA CONFIG sapc.. SAP 1 0 0 e7382001...
HANA ULINTEGRA... sapc.. SAP 1 4 0
HANA XS BASE sap 1 0 0
HANA XS_FORMLO... sap 1 0 3
HANA_XS_SQLCC SAP 1 0 1
HCO INA SERVICE sap 2 0 1
HCO INA UITOOLKIT sap 2 0 s
| SARUB 1) i 10 [}
! i v
Assigned Packages
Packages Descrption
B sapuisl 1
8 sapuisLdiscovery discovery
£ sapuis Lresources resources
£ sap.is Lresourceslicenses licenses
£ sapuis Lresources.sap =
8 sapuis Lresourcesszpm m
8 sapuis Lresources.sap.mthemes themes
£ sap.is Lresources.sap.mthemes.advanced advanced
£ sapuis Lresourcessspmithemes.advancedimg img
£ sap.is Lresources.sap.mthemes.advanced.img-.. img-RTL
£ sap.is Lresources.sap.mithemes.base base
#2520, Lsesources sap.mthemes baseimo. ima. <
@

image47.png
Delivery Unit
Create 2 delivery unit to transport packages.

Name*: HELLODEMO
Vendor: TruQua.com.
Responsible :

Version

Support Package Version

Patch Version:

PRMSID:

Caption:

SPPPMSID:

ACH:

®

image48.png
Assign Packages
Assign packages to the selected delivery unit.

Select Package(s)

4 (= Content
L
» & system-local
,

(9] Select ll sub-packages under the selected nodes

®

image49.png
Delivery Units
Menage delivery units to transport packeges.

Delivery Units
Neme Vendor Responsible Version Support Package Version _Patch Version PPMSID
HANA DEMOCONT... sap.c.. SAP 1 0 0
HANATACONFIG sapc.. SAP 1 0 0 678382001
HANA ULINTEGRA... sap.c.. SAP 1 4 0
HANAXSBASE sapc.. SAP 1 0 0
HANA XS FORMLO... sap.c.. SAP 1 0 3
HANAXSSQLCC sapc.. AP 1 0 1
HCOINASERVICE sap.c.. SAP 2 0 1
HCO_INA UITOOLKIT sap.c... SAP 2 3 12
HELLODEMO . 1 o)

SAPUB 1 sap 1 10 0
R i v

Assigned Packages
Packages Description B
i xsdemo xsdemo
i xdemo.”settings” "settings”

B xsdemo.data data
B xsdemo.services services
B xsdemo. ui
demo..
" settings
WebContent
META-INF
WEBINF
iib
demo ui =

image50.png
Select

You use this option to export al packages that make up a delivery unit and the
relevant objects contained therein, to the client or to the SAP HANA server file

Selectan export dest
[iype fitertext

b @ Install

b & Java

b @ Java EE

| € e vevpment

LG g

4 (= SAP HANA Content
4 Developer Mode
43 SAP Support Mode

1 (& SAP HANA Studio

b & Team

b & Web

I & Web Services.

& XML

image51.png
Select Delivery Unit
Select the delivery unit containing all the objects that you want to export.

Delivery Unit: [HELLODEMO(TruQua.com.)

Alias: HELLODEMO

List of Packages

Hhisdemo
xsdemo.settings”
Hhisdemo data

ssdemosenices

<

ter by time
Select Time Interval

B — |
13 =

Export Location

L 15

ObporttoSever © BxporttoClient O Attach to Transport Request

Location: Ci\

File Name: REPO_20130503-212951376-TQH--HELLODEMO.tgz

image52.png
Select

Select Delivery Unit modie to import objects available at the server or cent
location in the form of gz files.

S
[typefittertex

b & Install
b @ JavaEE
» @ Plug-in Development
b (5 Run/Debug.
4 (& SAP HANA Content
243 Data from Local File
223 Developer Mode
23 Import SAP NetWeaver BW Models
23 Mass Import of Metadata
Q2 Selective Import of Metadata
b E SAP HANA Studio
b & Team
4 ([Web
@, WARfile
b B Web services
b & XML

image53.png
Select File

Select the required fie to import content objects.

Select file
© Server © Client

File: CAREPO_20130503-212951376-TQH--HELLODEMO.tgz

Actions
Ovenwrite inactive versions.
Activate objects

Object import simulation

Status Object name.

image1.png

image54.png

